Proton magnetic relaxation studies of the interaction of D-xylose and xylitol with D-xylose isomerase. Characterization of metal-enzyme-substrate interactions.

نویسندگان

  • J M Young
  • K J Schray
  • A S Mildvan
چکیده

The interaction of D-xylose isomerase purified from two sources with Mn2+ and D-xylose or the competitive inhibitor xylitol has been examined by nuclear magnetic resonance. A greater paramagnetic effect of enzyme-bound Mn2+ on the alpha anomer of D-xylose than on the beta anomer was observed, providing independent evidence for the specificity of D-xylose isomerase for the alpha anomeric form of D-xylose. The exchange rate of alpha-D-xylose into the ternary complex, determined from the normalized paramagnetic contribution to the transverse relaxation rate (1/fT2p) of the carbon 1 proton of alpha-D-xylose, exceeds Vmax for the enzymatic reaction by 3 orders of magnitude. The amount of xylitol necessary to displace alpha-D-xylose from the substrate-enzyme-Mn2+ complex is consistent with the Km value for alpha-D-xylose and the inhibitor constant Ki for xylitol previously determined by the methods of enzyme kinetics. These results suggest that the NMR experiments observe complexes of D-xylose isomerase which are kinetically and thermodynamically competent to participate in catalysis. From the frequency dependence of the paramagnetic contribution to the longitudinal relaxation rate (1/T1p) of the carbon 1 proton of alpha-D-xylose, the correlation time (tauc) which modulates the dipolar interaction between enzyme-bound Mn2+ and alpha-D-xylose has been determined (5.1 x 1o(-10) s). From these observations a range of calculated distances between enzyme-bound Mn2+ and the carbon 1 proton of alpha-D-xylose (9.1 +/- 0.7 A) has been found. The enzyme-bound Mn2+ has comparable effects on the carbon 1, carbon 2, and carbon 5 protons of alpha-D-xylose, suggesting that these protons of the enzyme-bound substrate are equidistant from the bound Mn2+. A similar distance (9.4 +/- 0.7 A) between the enzyme-bound Mn2+ and the terminal methylene protons of xylitol, an analog of the open chain intermediate in the reaction, has been determined. The results of the present substrate relaxation and previous water relaxation studies suggest that two small ligands such as water molecules or a large portion of the protein intervene between the bound metal ion and the bound substrate in the active ternary complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of NADPH supply during xylitol production by engineered Escherichia coli.

Escherichia coli strain PC09 (DeltaxylB, cAMP-independent CRP (crp*) mutant) expressing an NADPH-dependent xylose reductase from Candida boidinii (CbXR) was previously reported to produce xylitol from xylose while metabolizing glucose [Cirino et al. (2006) Biotechnol Bioeng 95(6): 1167-1176]. This study aims to understand the role of NADPH supply in xylitol yield and the contribution of key cen...

متن کامل

Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis

Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required...

متن کامل

Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

BACKGROUND Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisat...

متن کامل

insilico Characterization and Homology Modeling of Arabitol Dehydrogenase (ArDH) from Candida albican

BACKGROUND Arabitol dehydrogenase (ArDH) is involved in the production of different sugar alcohols like arabitol, sorbitol, mannitol, erythritol and xylitol by using five carbon sugars as substrate. Arabinose, d-ribose, d-ribulose, xylose and d-xylulose are known substrate of this enzyme. ArDH is mainly produced by osmophilic fungi for the conversion of ribulose to arabitol under stress conditi...

متن کامل

Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 23  شماره 

صفحات  -

تاریخ انتشار 1975